Access keys

Skip to content Accessibility Home News, events and publications Site map Search Privacy policy Help Contact us Terms of use

Screening technique to reinforce fight against ash dieback

Copyright: BBSRC

Researchers at the University of York led a pioneering study which opens up a new front in the battle against a disease affecting ash trees across Europe.

The research identified genetic markers to predict whether specific trees in populations of ash will succumb to the disease or are able to tolerate and survive a fungal pathogen that is causing ash dieback.

The technology could help to maintain the ash tree as part of the UK landscape through pre-screening of individual tree seedlings to identify non disease-susceptible individuals before they are planted out.

The research was led by the Centre for Novel Agricultural Products (CNAP) in the Department of Biology at York and involved the Department of Geosciences and Natural Resource Management, the University of Copenhagen; the School of Biological and Chemical Sciences, Queen Mary University of London and the John Innes Centre. It is published in Scientific Reports.

Video

Across Europe, the European ash Fraxinus excelsior is being seriously affected by ash dieback with only around 2% of trees surviving in areas where the disease is well established. The disease was first discovered in the UK in 2012 and is progressing much as expected. In addition to the 157,000 hectares of ash woodland in the UK, the 12 million ash trees outside those areas – in parklands, gardens, hedgerows and along roads for example – are also at risk.

The research was jointly funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and Department for Environment, Food and Rural Affairs as part of the Nornex consortium project to develop a long-term solution to the ash dieback threat.

Using a population of selected trees with diverse susceptibility, the researchers sequenced their RNA to identify genes whose sequence and expression levels are correlated with disease symptoms. This allowed the scientists to identify gene markers that are correlated with low susceptibility to ash dieback disease. Using a second population of trees, they used these gene markers to successfully predict which of the trees were likely to have a low level of susceptibility to the fungal pathogen Hymenoscyphus fraxineus.

Professor Ian Bancroft, of CNAP, said: “Tree disease epidemics are a global problem, impacting food security, biodiversity and national economies. The approach we have used has never previously been used to screen for disease-resistant plants and in principle could be applied to identify disease tolerance in other species of trees that are currently being threatened by a range of tree pests and pathogens.”

Professor Allan Downie, from the John Innes Centre, said: “This is a wonderful example of British expertise in plant genomics and genetics rapidly and successfully being applied to minimise the impact of Ash Dieback. The technology developed offers a way around anticipated loss of more than 90% of UK ash trees by identifying and selecting those ash seedlings most likely to survive the epidemic of ash dieback currently sweeping across the country.”

Copyright: BBSRC
Ash twigs infected with Hymenoscyphus fraxineus. Copyright: BBSRC

Professor Melanie Welham, BBSRC Executive Director, Science, said: “With BBSRC and Defra funding scientists have been able to rapidly collaborate and develop ways that should help mitigate the threat facing the UK’s ash trees. This technique will help protect the UK’s ash population and biodiversity, which are enjoyed by millions of people across the country.”

Universities and Science Minister Jo Johnson said: "This pioneering research puts Britain at the forefront of tackling ash dieback and other tree diseases that are threatening our environment and global food security. By protecting the science budget in real terms we can continue to invest in world-class science that delivers environmental benefits worldwide, while ensuring everyone can continue to enjoy Britain’s woodlands.”

Lord Gardiner of Kimble, House of Lords Spokesman for the Department for Environment, Food and Rural Affairs said: “We want to make sure the graceful ash tree continues to have a place in our natural environment which is why we’ve invested more than any other country in research on Ash Dieback.

“The identification of genetic markers is a significant first step in developing trees with tolerance to the disease and testament to the innovation and dedication of our world leading scientists.”

ENDS

Notes to editors

The paper ‘Molecular markers for tolerance of European ash (Fraxinus excelsior) to dieback disease identified using Associative Transcriptomics’ is published in Scientific Reports.

About CNAP

The Centre for Novel Agricultural Products (CNAP) is an award winning strategic research centre based in the Department of Biology at the University of York. CNAP is dedicated to realising the potential of plants as renewable, low-cost factories that produce high-value chemicals and biofuels. Laboratory based discoveries are translated into practice in partnership with industry. For more information, please visit: www.york.ac.uk/org/cnap/

About John Innes Centre

Our mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, to apply our knowledge of nature’s diversity to benefit agriculture, the environment, human health and wellbeing, and engage with policy makers and the public.

To achieve these goals we establish pioneering long-term research objectives in plant and microbial science, with a focus on genetics. These objectives include promoting the translation of research through partnerships to develop improved crops and to make new products from microbes and plants for human health and other applications. We also create new approaches, technologies and resources that enable research advances and help industry to make new products. The knowledge, resources and trained researchers we generate help global societies address important challenges including providing sufficient and affordable food, making new products for human health and industrial applications, and developing sustainable bio-based manufacturing.

This provides a fertile environment for training the next generation of plant and microbial scientists, many of whom go on to careers in industry and academia, around the world. The John Innes Centre is strategically funded by the Biotechnology and Biological Sciences Research Council (BBSRC). In 2014-2015 the John Innes Centre received a total of £36.9M from BBSRC. www.jic.ac.uk

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, BBSRC invested over £509M in world-class bioscience in 2014-15. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: www.bbsrc.ac.uk.
For more information about BBSRC strategically funded institutes see: www.bbsrc.ac.uk/institutes.

External contact

David Garner, Head of Media Relations, University of York

+44 1904 322153


Tags: environmental change genetics The John Innes Centre plants video BBSRC press release Ash dieback