Access keys

Skip to content Accessibility Home News, events and publications Site map Search Privacy policy Help Contact us Terms of use

BBSRC Business

Connecting our science with industry, policy makers and society

Winter 2017

Scientists discover mechanisms of shape-shifting sea cucumbers

Copyright: M. Elphick
News from: Queen Mary University of London

Scientists from Queen Mary University of London (QMUL) have discovered for the first time how marine animals called sea cucumbers can rapidly change the stiffness of their body, which could provide a useful basis for developing novel biomaterials for applications in medicine.

One of the most abundant molecules in the human body is collagen, a structural protein that forms our bones, ligaments and skin. Once these tissues are formed, their mechanical properties can only be changed slowly over days or weeks – for example, in pregnant women the collagenous tissue in the uterus slowly softens in preparation for childbirth.

All animals have collagen, but one group of marine invertebrates – the echinoderms, which includes starfish and sea cucumbers – have evolved to have collagenous tissues with a unique property: they can rapidly change their stiffness. This type of collagen is known as mutable collagenous tissue (MCT) and is controlled by the nervous system, and is useful when, for example the animals need to 'turn to jelly' so they can avoid predation. However, the mechanisms by which the sea cucumber can change its stiffness were not known until now.

Lead author Dr Himadri Gupta from QMUL's Institute of Bioengineering, said: "The sea cucumber's MCT may serve as a template for bio-inspired materials, which can mimic its remarkable properties. These could be useful in flexible scaffolds for tissue engineering, cosmetic treatments against skin ageing, implantable biosensors, and materials for soft robotics."

Reporting in the journal Proceedings of the National Academy of Sciences, the QMUL team analysed the body wall of sea cucumbers using X-ray techniques at the European Synchrotron Radiation Facility in Grenoble, France. The sea cucumber's ability to change the shape of the body wall is due to the changes in the stiffness of a protein-rich interfibrillar matrix, which bonds with the collagen fibrils.

Co-author Professor Maurice Elphick from QMUL's School of Biological and Chemical Sciences, said: "Sea cucumbers are amazingly flexible and this study shows that their ability to shape-shift is not a result of any changes within the collagen fibrils themselves, but in the interfibrillar scaffold that cross-links with them."

First author and PhD student Jingyi Mo, from QMUL's School of Engineering and Materials Science, added: "Many collagenous or collagen-like biomaterials are designed to match surface chemistry of cells and tissues in the body, but there are very few that can change their mechanical properties rapidly."

The researchers hope to narrow down and isolate the molecules that lead to these properties of the sea cucumber's body wall, which in turn, can help in understanding how to apply this research in medicine and cosmetics.

The research was supported by the China Scholarship Council, the Engineering and Physical Research Sciences Council and the Biotechnology and Biological Sciences Research Council.

ENDS

Notes to editors

The X-ray technique used is time-resolved synchrotron small-angle X-ray diffraction combined with in situ tensile testing carried out at the high-brilliance beamline IDO2 at ESRF – www.esrf.eu/UsersAndScience/Experiments/CBS/ID02

'Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale' by J.Mo et al will be published in the journal Proceedings of the National Academy of Sciences on Monday 3 October. www.pnas.org/cgi/doi/10.1073/pnas.1609341113

For further details, images or to arrange interviews with the author please contact the QMUL press office (see external contacts below).

About QMUL

Queen Mary University of London (QMUL) is one of the UK's leading universities, and one of the largest institutions in the University of London, with 21,187 students from more than 155 countries.

A member of the Russell Group, we work across the humanities and social sciences, medicine and dentistry, and science and engineering, with inspirational teaching directly informed by our research. In the most recent national assessment of the quality of research, we were placed ninth in the UK (REF 2014).

As well as our main site at Mile End – which is home to one of the largest self-contained residential campuses in London – we have campuses at Whitechapel, Charterhouse Square, and West Smithfield dedicated to the study of medicine, and a base for legal studies at Lincoln's Inn Fields.

We have a rich history in London with roots in Europe's first public hospital, St Barts; England's first medical school, The London; one of the first colleges to provide higher education to women, Westfield College; and the Victorian philanthropic project, the People's Palace at Mile End.

Today, as well as retaining these close connections to our local community, we are known for our international collaborations in both teaching and research.

QMUL has an annual turnover of £350M, a research income worth £125M (2014/15), and generates employment and output worth £700M to the UK economy each year.

External contact

Neha Okhandiar, Press Office, Queen Mary University of London


+44 7834 039266