Related links

External links

Share this page:
Other services (opens in new window)
Sets a cookie

Biofuel from inedible plant material easier to produce following enzyme discovery

13 September 2010

Researchers funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have discovered key plant enzymes that normally make the energy stored in wood, straw, and other non-edible parts of plants difficult to extract. The findings, published today in Proceedings of the National Academy of Sciences, can be used to improve the viability of sustainable biofuels that do not adversely affect the food chain.

  Biofuel from inedible plant material

You need to have JavaScript enabled to view this video.

Video transcript - Video and audio help - Watch video on YouTube


The team based at the University of Cambridge, and now part of the BBSRC Sustainable Bioenergy Centre (BSBEC), has identified and studied the genes for two enzymes that toughen wood, straw and stalks and so make it difficult to extract sugars to make bioethanol or other plant-derived products. This knowledge can now be used in crop breeding programs to make non-edible plant material that requires less processing, less energy and fewer chemicals for conversion to biofuels or other renewable products and therefore have an even lower overall impact on atmospheric carbon.

The research also increases the economic viability of producing sustainable biofuels from the inedible by-products of crops through increasing our understanding of plant structures.

Lead researcher Professor Paul Dupree said: "There is a lot of energy stored in wood and straw in the form of a substance called lignocellulose. We wanted to find ways of making it easier to get at this energy and extract it in the form of sugars that can be fermented to produce bioethanol and other products."

Lignocellulose is an important component of plants, giving them strength and rigidity. One of the main components of lignocellulose is called xylan. Xylan in wood and straw represents about a third of the sugars that could potentially be used to make bioethanol, but it is locked away. Releasing the energy from lignocellulose is an important challenge to tackle as it will allow the production of fuels from plants in a sustainable way that does not affect the food chain.

Professor Dupree continued: "What we didn't want to do was end up with floppy plants that can't grow properly, so it was important to find a way of making xylan easier to break down without having any major effects."

The team studied Arabidopsis plants (a plant that is easy to study in the laboratory) that lack two of the enzymes that build the xylan part of lignocellulose in plants. They found that although the stems of the plants are slightly weaker than normal, they grow normally and reach a normal size. They also tested how easy it is to extract sugars from these plants and discovered that it takes less effort to convert all the xylan into sugar.

Professor Dupree concluded: "The next stage will be to work with our colleagues who are developing new varieties of bioenergy crops such as willow and miscanthus grass to see if we can breed plants with these properties and to use our discovery to develop more sustainable processes for generating fuels from crop residues. We expect to work closely with industrial collaborators to see how we can quickly transfer this research into real applications for transport fuels."

Duncan Eggar, BBSRC Bioenergy Champion said: "As oil reserves deplete, we must urgently find alternatives to oil-based fuels, plastics, lubricants, and other products. This research is a good example where understanding the fundamental biology of plants gives us the foundation to use plants to produce a raft of important products.

"We know that we can store a tremendous amount of energy from the sun in the form of plant material and at the same time capture atmospheric carbon dioxide. Working in consort with the other five hubs of the BBSRC Sustainable Bioenergy Centre, this research is aimed at improving our ability to release energy stored in plants in a form that is usable in normal everyday applications."

ENDS

Images

Click on the thumbnails to view and download full-size images.

Note that these images are protected by copyright law and may be used with acknowledgement.

Notes to editors

This research is published on 13 September 2010 in the Proceedings of the National Academy of Sciences, Mortimer et al. 'Absence of branches Q:1 from xylan in Arabidopsis gux mutants reveals potential for Q:2 simplification of lignocellulosic biomass'.

Prof Paul Dupree heads one of the six programmes of the BBSRC Sustainable Bioenergy Centre (BSBEC).

About BSBEC

BSBEC represents a £26M investment that increases UK bioenergy research capacity. It brings together six world-class research groups. This creates a network with expertise and specialist resources that span the bioenergy pipeline from growing biomass to fermentation for biofuels. Fourteen leading industrial associates bring business expertise and perspectives, and support totalling around £6M. This will help ensure that research outputs are translated into practical applications as quickly as possible. Ensuring that bioenergy is economically, environmentally and socially sustainable is core to the Centre's programmes. Life cycle analysis embeds this across the portfolio.

For more information visit: www.bbsrc.ac.uk/bsbec

About BBSRC

BBSRC is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £470M in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors.

BBSRC provides institute strategic research grants to the following:

  • The Babraham Institute
  • Institute for Animal Health
  • Institute of Biological, Environmental and Rural Sciences (Aberystwyth University)
  • Institute of Food Research
  • John Innes Centre
  • The Genome Analysis Centre
  • The Roslin Institute (University of Edinburgh)
  • Rothamsted Research

The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.

External contact

Tom Kirk, University of Cambridge Communications

tel: 01223 766205