Related links

Share this page:
Other services (opens in new window)
Sets a cookie

New smells through synthetic biology

Visit  Rothamsted Research website

24 June 2010

Scientists in the School of Chemistry Cardiff University and at the Biological Chemistry Department at Rothamsted Research have received an award worth over £1M by the Biotechnology and Biological Sciences Research Council, together with the Engineering and Physical Sciences Research Council, to develop a synthetic biology approach for predicting the structural characteristics of odorant molecules so as to produce new and more useful versions for use in pest control and potentially in perfumery through to medicine.

The grain aphid, Sitobion avenae, germacrene D (top), farnesyl diphosphate (below) and a homology model of germacrene D synthase (left) © Rothamsted Research
The grain aphid, Sitobion avenae, germacrene D (top), farnesyl diphosphate (below) and a homology model of germacrene D synthase (left) © Rothamsted Research

Many processes of living organisms involve the recognition of small chemical substances acting as signals. Some of the most powerful of these are involved in the sense of smell, or olfaction. For us, these can relate to sophisticated responses to foods and beverages; for lower animals, including pests, extremely important processes in their lives including the location of mates or food sources can depend on such olfactory responses.

Lead researcher, Professor Rudolf Allemann, says that his group's work on the production of chemical signals, particularly a group of compounds called sesquiterpenes, many of them active as olfactory cues for most animals, and as stress signals even for plants, has put chemists into a position to use the natural enzymes involved in the bioproduction of such signals to generate novel and potentially more useful sesquiterpene alternatives. The tremendously complex and diverse group of sesquiterpene natural products originate from just one parent molecule called farnesyldiphosphate, which is modified through the action of enzymes called terpene synthases in more than 300 different ways. Professor Allemann's group at Cardiff have recently developed synthetic methods for making simple changes to farnesyldiphosphate. These analogues are then transformed using natural sesquiterpene synthases to produce novel 'sesquiterpene-like' compounds that are not normally found in nature. It is hoped that these nature-like compounds will have novel and improved biological activities. The synthesis of such molecules generally requires complex and expensive chemistry that often produce only small amounts of the desired product. The new synthetic biology approach can lead to large amounts of the targets in only one step that uses nature's enzymes. At Rothamsted, Professor John Pickett, FRS, is particularly excited at the prospect of using the system by which the olfactory signals are produced to make new odorants that, by definition, will have the necessary structural properties of the original materials so as to maintain high activity.

Over recent years, considerable research resources have been spent on understanding the recognition processes for small molecular weight chemicals, particularly those active in olfaction, so as to design new and more useful biologically active substances. Although tremendous advances have been made, it is still not possible to design, rationally, chemical alternatives that will fool olfactory receptors in our noses, on the antennae of insects or the chemical receptors in plants. Recently, new developments were made at Rothamsted, in collaboration with the Max Planck Institute at Jena in Germany, in understanding how proteins involved in insect olfaction interact with moth sex pheromones. However, here we have completely new work, which will use the process by which the odorants are produced naturally to construct new chemicals that could have not only high olfactory activity but also improved physical properties, such as stability against degradation by light and aerial oxidation. Such compounds would be of great value in pest control. If successful, the work will also provide new insights into the rational design of biologically active compounds generally and could have wider value in virtually all areas of natural sciences where chemical signals are involved including agriculture and pharmaceuticals.

ENDS

Notes to editors

For further information, please contact the Rothamsted Research Press Office. Dr Sharon Hall (Tel: 01582 763 133 ext 2757 or email sharon.hall@bbsrc.ac.uk) or Dr Adélia de Paula (Tel: 01582 763 133 ext 2260 or email adelia.depaula@bbsrc.ac.uk).

About Rothamsted Research

Rothamsted Research is based in Hertfordshire and is one of the largest agricultural research institutes in the country. The mission of Rothamsted Research is to be recognised internationally as a primary source of first-class scientific research and new knowledge that addresses stakeholder requirements for innovative policies, products and practices to enhance the economic, environmental and societal value of agricultural land. The Applied Crop Science department is based at Broom's Barn, Higham, Bury St. Edmunds. North Wyke Research is located near Okehampton in Devon. Rothamsted Research is an institute of the Biotechnology and Biological Sciences Research Council. www.rothamsted.bbsrc.ac.uk

About BBSRC

BBSRC is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £470M in a wide range of research that makes a significant contribution to the quality of life in the UK and beyond and supports a number of important industrial stakeholders, including the agriculture, food, chemical, healthcare and pharmaceutical sectors.

BBSRC provides institute strategic research grants to the following:

  • The Babraham Institute
  • Institute for Animal Health
  • Institute of Biological, Environmental and Rural Sciences (Aberystwyth University)
  • Institute of Food Research
  • John Innes Centre
  • The Genome Analysis Centre
  • The Roslin Institute (University of Edinburgh)
  • Rothamsted Research

The Institutes conduct long-term, mission-oriented research using specialist facilities. They have strong interactions with industry, Government departments and other end-users of their research.