Share this page:
Other services (opens in new window)
Sets a cookie

Scientists discover stem cell origin of neck and shoulders

21 July 2005

Research published in Nature (21 July) will outline for the first time the stem cell origin of the structure of the neck and shoulders in vertebrates. The scientists believe that instead of groups of stem cells creating the skeletal and muscle structure separately they actually appear to make them together as a sort of ‘composite’. This could have significant implications for clinical medicine and our understanding of vertebrate evolution.

Scientists at the Wolfson Institute for Biomedical Research of University College London, part-funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and working with international collaborators, used a new genetic technique to tag embryonic stem cells and then trace them to the adult animal. They discovered that instead of homogeneous groups of stem cells making up the bones of the shoulder and neck and another making the muscles, a newly-discovered group of stem cells called mesenchymal stem cells make both the muscles and the point where it joins the skeleton.

The researchers believe their results show that the skeleton and muscles of vertebrates should not be seen as separate but instead are composites, with the boundaries between cell groups blurred around the body. For example, the stem cell group that makes the connective tissues of the swallowing/gulping muscles also makes the skeletal regions of the shoulder girdle. This sheds new light on human diseases such as Klippel-Feil syndrome where both regions are often malformed.

Dr Georgy Koentges, one of the lead researchers at UCL, said, “Anatomists and everyone else would look at the skeleton and assume that the bone structures are uniform and are the basic components of vertebrate organisation. Our research suggests this is wrong and actually groups of stem cells create not only the muscles of the neck and shoulder but also the skeletal structure where these muscles are attached. These groups of stem cells are making scaffolds of connections early during embryonic development which are later embellished and filled by other cells: just like the scaffold of a house which is later filled in by bricks, mortar and windows. If cells are from the same stem cell origin they ‘stick together’ throughout their life – normally without us noticing it.”

As the joining points between muscles and bones have survived unaltered across hundreds of millions of year researchers can also start to map cell territories into fossils. For the first time the research team have been able to trace what happened to a major shoulder bone that features in many extinct land animals. They found that it appears to survive in modern vertebrates as the scapular spine.

Dr Koentges commented, “Now that we have identified these key players in forming the neck and the shoulders we can start looking for the genes that are on in these stem cells and which are ultimately responsible for evolutionary changes over millions of years and are also behind a number of serious human illnesses. This is an active area of research that we are involved in.”

ENDS

Notes to editors

The research is published in Nature, July 21 2005. Neural crest origins of the neck and shoulder. Toshiyuki Matsuokal, Per E. Ahlberg, Nicoletta Kessaris, Palma Iannarelli, Ulla Dennehy, William D. Richardson, Andrew P. McMahon & Georgy Koentges.

The research was initiated by two BBSRC grants under the CODE Initiative on evolution and development. The research has since received additional funding from the Wellcome Trust, the Medical Research Council, the NIH and the international Human Frontiers Science Programme Organisation.

About BBSRC

The Biotechnology and Biological Sciences Research Council (BBSRC) is the UK funding agency for research in the life sciences. Sponsored by Government, BBSRC annually invests around £380 million in a wide range of research that makes a significant contribution to the quality of life for UK citizens and supports a number of important industrial stakeholders including the agriculture, food, chemical, healthcare and pharmaceutical sectors. http://www.bbsrc.ac.uk

Images

Image showing in green genetically labelled stem cells of the shoulder girdle, with muscles in red and cell bodies in blue. The attachment regions are green domains. (1.3 MB)

Click on the thumbnail to view and download full-size image.

Larger Image

Note that this image is protected by copyright law and may be used with acknowledgement of Dr Koentges and UCL.

External contact

Dr Georgy Koentges, University College London

tel: 020 7679 6955

Jenny Gimpel, Media Officer, University College London

tel: 020 7679 9739, Out of hours: 07917 271 364

Professor Per Ahlberg, Uppsala University

tel: +46 18471 2641

Contact

Matt Goode, Head of External Relations

tel: 01793 413299
fax: 01793 413382

Tracey Jewitt, Media Officer

tel: 01793 414694
fax: 01793 413382