Access keys

Skip to content Accessibility Home News, events and publications Site map Search Privacy policy Help Contact us Terms of use

New technology pinpoints root growth mechanism

8 March 2012

It is essential for roots to grow down so they can explore the soil and maximise their water uptake. But how they know that is a question that has fascinated scientists since Darwin. Now scientists led by The University of Nottingham have found the answer.

Gravity profoundly influences plant growth and development. But after years of academic research the interdisciplinary team from the UK, Germany, France, Belgium, Sweden and the US has finally identified how that process happens. Their results have been published in the leading academic journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Video

X-ray technology pinpoints root growth mechanism  

You need to have JavaScript enabled to view this video.

With funding from the Biotechnology and Biological Sciences Research Council (BBSRC), Malcolm Bennett, a Professor in plant science at The University of Nottingham and Biology Director of the Centre for Plant Integrative Biology, used newly developed technology to pinpoint what happens when plant roots decide to grow down and not up. He said: "This research really demonstrates the value of an interdisciplinary approach to plant science questions. By combining the skills of mathematical modellers with experimental biologists we have a new range of tools with which to investigate root growth".

Scientists have long speculated that plants bend in response to gravity due to the redistribution of the plant hormone auxin in the tip of the root. This study combined the newly developed DII-VENUS technology - another collaborative research project involving The University of Nottingham - with mathematical modelling to demonstrate that auxin does indeed redistribute when roots are turned through 90 degrees, but far faster than previously thought.

This multidisciplinary approach reveals that auxin is redistributed to the lower side of a growing root within minutes of the root being turned through 90 degrees. It also shows that this gradient is rapidly lost as bending root tips reach a 'tipping point' at an angle of 40 degrees to the horizontal. The formation and loss of the auxin gradient serves as an 'on' and 'off' switch for the root bending response.

The auxin sensor DII-VENUS, recently published in the journal Nature, was used in conjunction with a parameterised mathematical model to provide a high-resolution map of hormone distribution through time.

ENDS

About The University of Nottingham

The University of Nottingham, described by The Sunday Times University Guide 2011 as 'the embodiment of the modern international university', has 40,000 students at award-winning campuses in the United Kingdom, China and Malaysia. It is ranked in the UK's Top 10 and the World's Top 75 universities by the Shanghai Jiao Tong (SJTU) and the QS World University Rankings. It was named 'the world's greenest university' in the UI GreenMetric World University Ranking 2011.

More than 90 per cent of research at The University of Nottingham is of international quality, according to the most recent Research Assessment Exercise. The University's vision is to be recognised around the world for its signature contributions, especially in global food security, energy & sustainability, and health. The University won a Queen's Anniversary Prize for Higher and Further Education in 2011, for its research into global food security. For more information visit: www.nottingham.ac.uk.

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.

Funded by Government, and with an annual budget of around £445M, we support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, our science and our impact see: www.bbsrc.ac.uk.
For more information about BBSRC strategically funded institutes see: www.bbsrc.ac.uk/institutes.


Tags: press release video